
Algorithms for computing preimages of

cellular automata configurations

Iztok Jeras, Andrej Dobnikar

University of Ljubljana, Faculty of Computer and Information Science, Trzaska
cesta 25, SI-1001 Ljubljana, Slovenia

Abstract

This paper investigates preimages (ancestors or past configurations) of specified
configurations of one-dimensional cellular automata. Both counting and listing of
preimages are discussed. The main graphical tools used are the de Bruijn diagram,
and its extension the preimage network, which is created by concatenating de Bruijn
diagrams. The counting of preimages is performed as multiplication of topological
matrices of de Bruijn diagrams. Listing of preimages is described using two algo-
rithms. The first algorithm traces paths in the preimage network and focuses on
local knowledge of the network. The second performs a complete analysis of the
network before proceeding with listing.

Key words: cellular automata, counting and listing preimages, ancestors,
algorithms
PACS: 89.70.+c, 89.75.-k

1 Introduction

Preimages of one-dimensional cellular automata (CA) have been discussed by
many authors with different focuses. Earlier studies questioned reversibility
and the existence of “Garden of Eden” states, and most observed statisti-
cal properties of CA. The focus of this paper is first to count (compute the
number) the preimages (ancestors or past configurations) of a known present

Email addresses: iztok.jeras@rattus.info (Iztok Jeras),
andrej.dobnikar@fri.uni-lj.si (Andrej Dobnikar).

URLs: http://www.rattus.info (Iztok Jeras),
http://laspp.fri.uni-lj.si/ (Andrej Dobnikar).

Preprint submitted to Elsevier Science 5 October 2007

configuration and second to list the preimages. The theory is graphically pre-
sented using a preimage network, a graph derived from the de Bruijn diagram.

Counting of preimages of one-dimensional CA has been studied by Jen [1] in
around 1989 and Voorhees [2] in 1993. They both refer to the de Bruijn dia-
gram, but the problem with their methods is that they use complicated equa-
tions like recurrence relations to compute the number of preimages. McIntosh
[5] in 1993 simplified the methods to matrix and vector operations. Counting
of preimages in this paper uses equations defined by McIntosh with a modi-
fied formalization to bring them closer to the formal language and automata
theory, and to generalize them to arbitrary CA parameters.

The de Bruijn diagram describes the overlapping of strings and is used in
different ways by different authors. This paper uses the diagram as described
by McIntosh but introduces a new graphical representation for it: the preimage
diagram. Such diagrams can be concatenated to form a preimage network,
where all distinct preimages are represented as paths in the network. The
preimage network is analyzed using network analysis theory by Batagelj [7]
combined with de Bruijn diagram theory by McIntosh.

The listing of preimages is less studied than their counting. For small config-
urations, preimages can be generated by brute force methods, but since the
number of configurations grows exponentially with configuration size this is
not possible for large CA. In 1992 Wuensche [3] informally described an algo-
rithm for listing preimages of finite configurations and later implemented it in
his DDLab software. In 2004 Mora, Juárez and McIntosh [4] described a differ-
ent algorithm that uses the subset diagram of the de Bruijn diagram described
by McIntosh [5]. This paper presents two algorithms using the preimage net-
work as a tool to describe them graphically. The two algorithms can be seen as
extremes, with all the known algorithms placed between them. The trace and
backtrack (TB) algorithm uses only local knowledge of the preimage network
and lists preimages during tracing, while the count and list (CL) algorithm
performs a complete analysis of the whole network before it proceeds to listing.
The TB algorithm is almost identical to the one described by Wuensche, while
the algorithm by Mora is closer to the CL algorithm. At the end of the paper,
the computational complexity and memory consumption of the described al-
gorithms are compared. For a short explanation and comparison of algorithms
see [6].

The theory in this paper describes one-dimensional CA that are general in
terms of cell values, neighborhood size and whether the configuration is cyclic
or bounded. To improve intelligibility of the paper, most figures do not rep-
resent general CA but rather the commonly known decimal rule 110. Some
examples using this rule are presented at the end of the paper.

2

http://www.ddlab.com

The paper begins with a formal definition of one-dimensional CA and a defini-
tion of preimages. Then, the text can be roughly divided into two sections: the
first about counting preimages and the second about listing preimages. The
section on counting preimages begins with the transformation of de Bruijn
diagrams into preimage diagrams and further into a preimage network. The
matrix representation of diagrams and use of such matrices to count preim-
ages is defined next. The section about listing preimages describes two listing
algorithms. Both algorithms are compared to each other and to other known
algorithms. In the appendix at the end of the paper there is a collection of
examples that show the usage of the theory described in the paper.

2 Nomenclature

Basic symbols
S the set of cell states
k the number of cell states
c cell state (value)
α, β strings of cell values
C configuration
N configuration length
x position index
r neighborhood radius
n neighborhood or link
o overlap or node
m neighborhood size
f local transition function
F global transition function
t time index (present)

Additional symbols
DDD preimage matrix
d elements of DDD
bbb preimage vector
bbbL left boundary vector
bbbR right boundary vector
bbbu unrestricted boundary v.
p number of preimages
wn link (neighborhood) weight
wo node (overlap) weight

Abbreviations
CA cellular automata
TB trace and backtrack alg.
CL count and list algorithm

3 Formal definition of cellular automata

One-dimensional CA are finite or infinite one-dimensional arrays of cells ar-
ranged on a discrete lattice. Each cell can have one of the k available cell
values or cell states c ∈ S = {0, 1, . . . , k − 1}. The state of an array of cells is
represented by a string α = . . . cx−1cxcx+1 The string of states of all cells
of a finite CA of length N is a configuration C = c0c1 . . . cN−1. The state of
the CA at time t is represented by the configuration Ct.

The neighborhood nx = cx−r . . . cx+r of the cell cx is the string of cells in a
radius r around the observed cell (Figure 1). The size of the neighborhood is
m = 2r + 1.

3

Fig. 1. Neighborhood nx of the observed cell cx at the center (m = 2r + 1)

At each CA evolution step, all cells from the current configuration Ct syn-
chronously evolve into the future configuration Ct+1. The evolution of every
single cell ct

x into its future value ct+1
x is defined as the output of the local

transition function f that takes as input the present neighborhood nt
x of the

observed cell at position x. The local transition function is commonly called
the rule.

ct+1
x = f(nt

x) = f(ct
x−r . . . ct

x+r)

The evolution step of the whole CA is defined as the global transition function
Ct+1 = F(Ct). It is the application of the local transition function to all cells
in the configuration simultaneously.

F(c0c1 . . . cN−1) = f(n0)f(n1) . . . f(nN−1)

Neighborhoods of any pair of adjacent cells cx−1cx overlap over a length of 2r
cells. The overlap ox = cx−rcx−r+1 . . . cx+r−1 uses the position index x from the
right cell in the adjacent pair (Figure 2). Another way to think about overlaps
is to observe a cell cx. Then the left overlap is ox = cx−rcx−r+1 . . . cx+r−1 and
the right overlap is ox+1 = cx−r+1cx−r+2 . . . cx+r. Both the left and the right
overlap are parts of the neighborhood nx.

Fig. 2. Overlap ox at the left and overlap ox+1 at the right of the observed cell cx,
as part of the neighborhood nx (r = 1, 2r = 2)

A cyclic configuration is created by joining the left and the right boundary of
a finite configuration length N . The position index x becomes a cyclic group
of length N .

x� = x mod N

4

The cyclic boundary condition is commonly used since it avoids the explicit
definition of the boundary.

A bounded configuration is created by cutting a finite configuration length N
from an infinite lattice. At the left and the right boundary, neighborhoods
overstep the configuration by r cells (Figure 3). To calculate a future con-
figuration Ct+1, the 2r overstepping cells at both boundaries must be de-
fined. The same problem occurs when calculating preimages, so the preimage
Ct−1 is 2r cells longer then the present configuration Ct. The left boundary
BL = c−r . . . c−1 and the right boundary BR = cN . . . cN−1+r are parts of the
preimage Ct−1 = c−r . . . cN−1+r. It is usually assumed that the overstepping
cells in the past can have any value. Such boundaries are called unrestricted
boundaries.

In this paper the boundary condition is assumed to be cyclic, unrestricted or
a specified set of overstepping cell values. In the last case the infinite string
outside the boundaries of the observed finite configuration may be implicitly
taken into account.

Fig. 3. Neighborhoods overstepping the left and the right boundary on a bounded
configuration (forward time direction indexes at the left and backward time direction
indexes at the right)

Example 1 Most of the examples in this paper are based on the elementary
(k = 2, r = 1) rule 11010 (Wolfram notation). Each cell can be in two different
states. The neighborhood consists of the observed cell and two neighbors m =
2r + 1 = 3. The local transition function is defined by the decimal rule 11010

(011011102 binary). The binary representation of the rule is constructed from
outputs of the local transition function for all distinct neighborhoods (km = 8)
as inputs. The transition function is often represented as a transition table:

1112︸ ︷︷ ︸
0

1102︸ ︷︷ ︸
1

1012︸ ︷︷ ︸
1

1002︸ ︷︷ ︸
0

0112︸ ︷︷ ︸
1

0102︸ ︷︷ ︸
1

0012︸ ︷︷ ︸
1

0002︸ ︷︷ ︸
0

3.1 Reversing the direction of time

The local transition function and the global transition function define the
evolution of the cellular automaton in the forward time direction. To calculate

5

preimages of the present configuration, inverses of the forward functions must
be defined.

The preimages of a single cell ct
x are locally valid neighborhoods nt−1

x that are
mapped into the observed cell value by the local transition function (Figure
1). The inverse of the local transition function is defined as:

f−1(ct
x) = {nt−1

x ∈ Sm | f(nt−1
x) = ct

x}

Preimages Ct−1 of the present configuration Ct are past configurations that are
mapped into the present configuration by the global transition function (Fig-
ure 4). The inverse of the global transition function for cyclic configurations
is:

F−1(Ct) = {Ct−1 ∈ SN | F(Ct−1) = Ct} ,

and for bounded configurations:

F−1(Ct) = {Ct−1 ∈ SN+2r | F(Ct−1) = Ct} .

The relation between local and global preimages is described later in the paper.

The number p of preimages Ct−1 can vary from none to kN or kN+2r, depend-
ing on the rule, the present configuration Ct and boundary conditions. This
raises questions about the injectivity, surjectivity and reversibility of the rule;
however, these topics are not discussed in this paper.

Fig. 4. The forward and inverse global transition functions

3.2 The number notation for strings

The neighborhood and the overlap are strings of cells, but it is often useful to
see them as numbers. In this case, k is used as the base of the number, and
cell values in the string are digits. For example, when k = 2, the strings are
binary numbers. The number notation for a string α = c0 . . . cN−1 length N
is:

α =
N−1∑
i=0

kN−1−ici = kN−1c0 + · · ·+ k1cN−2 + k0cN−1

6

The number notation is used to represent and order strings as neighborhoods
n, overlaps o and configurations C. When a string of more than one digit is
written as a constant, the base of the number is added as a subscript.

4 Counting preimages

De Bruijn diagrams are used to describe how strings can overlap and are
the basis of most papers about preimages. Strings of equal length are repre-
sented by nodes. Directed links between nodes associate strings that can be
overlapped. The source string aα overlaps with the drain string βb if α = β.

Different methods use the de Bruijn diagram to represent preimages. In this
paper the method described by McIntosh [5] is used. To facilitate the de-
scription of algorithms for counting and listing preimages, this paper intro-
duces a different graphical representation of the de Bruijn diagram (Figure 5),
and names it preimage diagram (Figure 8). The preimage diagram represents
preimages of a single cell. They can be concatenated into a preimage network
to represent preimages of a string of cells.

Fig. 5. de Bruijn diagrams for rule 110 as drawn by Jen (left) and McIntosh (right)

4.1 Preimages of a single cell and the preimage diagram

The preimage diagram represents preimages of a single present cell ct. This
preimages are past neighborhoods nt−1. The construction of the preimage
diagram will be described in three steps. It starts with the de Bruijn diagram
(step I), proceeds with the adaptation for the CA rule (step II) and terminates
with decomposition into preimage diagrams (step III).

Step I The size of the de Bruijn diagram (Figure 6) depends on the number
of distinct neighborhoods. It is composed of km−1 nodes, one for each of the

7

overlaps, and km directed links, one for each of the neighborhoods. Nodes
are drawn twice and arranged into two identical columns (from overlap 0
at the top to overlap km−1 − 1 at the bottom). The two columns can be
seen as overlaps at the left and right side of an observed cell (Figure 2).
Directed links connect source nodes ot−1

s (left overlaps) to drain nodes ot−1
d

(right overlaps). Links represent neighborhoods nt−1
sd , that contain the source

overlap at the left nt−1
sd = ot−1

s ct−1
d and the drain overlap at the right side of

the string nt−1
sd = ct−1

s ot−1
d (Figure 7). In the first step links are labeled with

neighborhood string values.

Fig. 6. Step I: de Bruijn diagram adopted for cellular automata (the example repre-
sents elementary 1D rules with two cell values c ∈ {0, 1}, a m = 3-cell neighborhood
and a 2r = 2-cell overlap)

Fig. 7. Decomposition of the neighborhoods into two cell-overlap pairs

Step II To adapt the de Bruijn diagram to the CA rule, link labels are
mapped by the local transition function from past neighborhood values nt−1

to present cell values ct = f(nt−1) (Figure 8).

Fig. 8. Step II: links in the de Bruijn diagram are labeled according to the local
transition function (the example represents the elementary rule 110)

8

Step III At the end, the de Bruijn diagram is decomposed into k preimage
diagrams (Figure 9), one for each of the available cell values. The preimage di-
agram represents the history of a single present cell with value ct. Only locally
valid neighborhoods that map into the observed cell by the local transition
function ct = f(nt−1) are allowed in the preimage diagram. All invalid links
are removed. Arrows in the diagrams can be omitted, since they always point
in the increasing direction of the position index x (from left to right).

Fig. 9. Step III: the de Bruijn diagram is decomposed into k preimage diagrams
(the example represents the elementary rule 110)

Topological matrices D(c) of preimage diagrams for each cell value c are used
for counting preimages. Time indexes are omitted in the definition.

Definition 2 The single cell preimage matrix DDD(c) represents preimages of
an observed single present cell with value c. It is a square of km−1 × km−1

elements one for each overlap pair (os, od). The matrix element dos,od
is 1 if

first, a past neighborhood n = oscd = csod exists that can be constructed as
a link from the source overlap os to the drain overlap od and second, n is a
locally valid neighborhood f(n) = c. Else the matrix element is 0.

DDD(c) =

d0,0 d0,1 · · ·
d1,0 dos,od

· · ·
...

...
. . .

 os, od = 0, 1, 2, . . . , km−1 − 1

dos,od
=

1 : ∃n, cs, cd : oscd = csod = n and f(n) = c

0 : else

The above definition for the single cell preimage matrix is a special case of the
definition for the cell string preimage matrix, where the string is a single cell
long (|α| = 1).

Example 3 For rule 110 there are two cell values k = 2 and consequently
two different single cell preimage matrices (DDD(0) and DDD(1)) representing two
single cell preimage diagrams (Figure 9).

DDD(0) =

1 0 0 0
0 0 0 0
1 0 0 0
0 0 0 1

 DDD(1) =

0 1 0 0
0 0 1 1
0 1 0 0
0 0 1 0

9

4.2 Preimages of a string of cells and the preimage network

Both the graphical representation and the matrix notation can be extended
from single cells into cell strings.

4.2.1 Preimage network

The preimage network is an extension of the single cell diagram to a string
diagram. As cells are aligned into a string α = c0c1 . . . cN−1, preimage diagrams
for each of the cells can also be aligned to form a preimage network (Figure
10). The network is composed of nodes ox representing overlaps and links nx

representing neighborhoods.

Fig. 10. Preimage network for a string of cells (the example is based on rule 110 CA
and the present configuration string α = 01 . . . 1 . . . 0)

A node ox is defined by the pair 〈o, x〉. The overlap value o specifies the node’s
vertical position. The position index x specifies the node’s horizontal position.
The maximum fan-in and fan-out of each node is k.

A link nx is defined by the pair 〈n, x〉. The neighborhood value n specifies the
vertical position of the link’s source and drain nodes. The position index x
specifies the link’s horizontal position.

There are no cycles in the preimage network, although preimages of cyclic
configurations can be seen as cycles in the network with joined boundaries.

Nodes at the boundaries have a special notation (Figure 11). Nodes at the
left boundary are oL = 〈o, x = 0〉 and nodes at the right boundary are oR =
〈o, x = N〉. In cyclic configurations both boundaries represent the same nodes
(0 = N mod N).

10

4.2.2 Preimages of a string of cells

Distinct preimages have distinct representations as paths in the network. Each
preimage Ct−1 of a present configuration Ct is a globally valid path that must
begin at one of the overlaps oL at the left boundary, then pass N − 1 overlaps
in between the boundaries, and end at one of the overlaps oR at the right
boundary. For cyclic configurations the boundaries are connected, so paths
must begin and end at the same overlap oL = oR. The idea can be extended
to configurations of infinite size. Preimages become paths of infinite length.

Fig. 11. Overlaps at the configuration boundaries

A preimage matrix can be defined to describe the preimage network in a
similar way as for the preimage diagram.

Definition 4 DDD(α) is the cell string preimage matrix of the observed present
string α of length |α| = N ≥ 0. Elements doL,oR

in the preimage matrix
represent the number of preimages (distinct paths in the network) that begin
at an overlap oL at the left boundary and end at an overlap oR at the right
boundary (Figures 10 and 11).

DDD(α) =

d0,0 d0,1 · · ·
d1,0 doL,oR

· · ·
...

...
. . .

 oL, oR = 0, 1, 2, . . . , km−1 − 1

doL,oR
(α) =

the number of distinct paths from oL to oR

in the preimage network of the string α

Definition 5 The preimage matrix of an empty string α = ε is an identity
matrix.

DDD(ε) = I

Theorem 6 The cell string preimage matrix DDD(α) of the string α = c0c1 . . . cN−1

is the product of the chain of single cell preimage matrices DDD(cx).

DDD(α) =
N−1∏
x=0

DDD(cx) = DDD(c0)DDD(c1) · · ·DDD(cN−1)

11

Proof (sketch) The proof is a simple induction on the length of the string.
Matrices DDD(ε) and DDD(c) for strings of length 0 and 1 are used for the basis.
The inductive step states that from DDD(α) follows DDD(αc) = DDD(α)DDD(c).

4.3 Boundary conditions

Preimage vector bbb is a common name in this paper for column vectors that
describe a certain property of overlaps. Each preimage vector of km−1 elements
refers to a column of overlaps in the preimage network. The described overlap
property depends on the usage of the vector; therefore, some preimage vectors
are given names that distinguish them. This sections defines boundary vectors
bbbL and bbbR.

The left preimage boundary BL and the right preimage boundary BR are
strings of cells length r. There are kr possible values for this strings. Bound-
ary conditions must state which of these strings can be used to construct
preimages and which cannot. In the context of preimages as paths in the
preimage network, overstepping strings are seen as part of boundary overlaps
(Figures 10 and 11). Boolean boundary vectors (bbbL for the left boundary and
bbbR for the right boundary) specify which boundary overlaps can be used to
trace preimage paths and which cannot.

Definition 7 bbbL is the left Boolean boundary vector. If bbbL(oL) (the oL-th
element of the vector bbbL) is 1, then the left boundary overlap oL is valid and
can be used to trace preimages; if the element is 0, the overlap is invalid and
cannot be used to trace preimage paths. The definition for the right Boolean
boundary vector bbbR is similar.

bbbL =
[
bbbL(0), bbbL(1), . . . , bbbL(oL), . . . , bbbL(km−1 − 1)

]T

bbbL(oL) =

1 : the overlap oL can be used to trace preimages

0 : the overlap oL cannot be used to trace preimages

Unrestricted boundary vectors are used to get preimages for all distinct bound-
ary strings BL and BR.

Definition 8 For the unrestricted boundary vector bu it is assumed that all
boundary overlaps can be used to trace preimages. Therefore, the unrestricted
boundary vector contains all ones.

bbbu = [1, 1, . . . , 1]T

12

4.4 The number of preimages

The number of preimages of a bounded configuration defined by the cell string
α is computed by applying boundary conditions bbbL and bbbR to the preimage
matrix of the string.

pL↔R(α) = bbbT
L DDD(α)bbbR

Unrestricted boundaries bbbu are used to get all distinct preimages.

pu↔u(α) = bbbT
u DDD(α)bbbu

In the case of cyclic configurations there is no outside information, so there is
no need to define boundaries. But there is a restriction that a preimage must
begin and end with the same overlap. Such preimages can be found on the
diagonal of the preimage matrix. A cyclic preimage vector bbb� is constructed
from the diagonal.

bbb�(α) = [d0,0(α), d1,1(α), . . . , dkm−1−1,km−1−1(α)]T

The number of all preimages is now the scalar product of an unrestricted
boundary vector bbbu and the cyclic preimage vector bbb�.

p�(α) = bbbT
u · bbb�(α)

4.5 Weighted preimage network

In a weighted preimage network each node and link is given a weight. The
primary function of weights is to distinguish globally valid nodes and links
from those that are only locally valid. The preimage network is constructed
from preimage diagrams of a string of cells. By definition of the preimage
diagram, all links in the preimage network are locally valid. But not all links
are part of a globally valid path representing a preimage. The knowledge
of whether a link is globally valid or not is useful in algorithms for listing
preimages.

Node and link weights specify the number of preimages that can be traced
through a node or a link in the network. A link or a node is globally valid if
at least one preimage can be traced through it, or in other words if it can be
reached from the left and from the right boundary. The last idea is used to
compute the weights. Two different methods are given for computing weights
for bounded and cyclic configurations.

13

4.5.1 Preimage network weights for cyclic configurations

Path counters that are needed to compute weights are calculated with a for-
ward and backward counting pass. In the case of a cyclic configuration, over-
laps inside the boundary have to be distinguished, since each preimage must
start and end with the same overlap. Therefore, counters are computed as
preimage matrices DDDx,f (forward pass) and DDDx,b (backward pass).

The number of paths poL→ox between a left boundary overlap oL and an ob-
served overlap ox is computed as the element doLox,f that can be found at the
oL-th row and ox-th column in the matrix DDDx,f , while the number of paths
pox←oR

between an observed overlap ox and a right boundary overlap oR is
computed as the element doxoR,b that can be found at the ox-th row and oR-th
column in the matrix DDDx,b.

doLox,f = poL→ox doxoR,b = pox←oR
oL, ox, oR = 0, 1, . . . , km−1 − 1

Counting starts at one of the boundaries, and the path length is incremented
cell by cell until it reaches the opposite boundary. Two counting passes are
needed. The forward pass begins at the left boundary; it computes counter
matrices for each overlap position index x = 0, 1, . . . , N and ends at the
right boundary. The backward pass begins at the right boundary; it com-
putes counter matrices for each overlap position index x = N, N − 1, . . . , 1, 0
and ends at the left boundary.

The forward counting pass starts at x = 0 with an identity matrix DDD0,f = III.
The matrix at position x is calculated from the matrix at position x− 1.

DDD0,f = III DDDx,f = DDD(c0 . . . cx−1) = DDDx−1,f DDD(cx−1) DDDN,f = DDD(α)

The backward counting pass starts at x = N with an identity matrix DDDN,b = III.
The matrix at position x is calculated from the matrix at position x + 1.

DDDN,b = III DDDx,b = DDD(cx . . . cN−1) = DDD(cx)DDDx+1,b DDD0,b = DDD(α)

At the end of each counting pass the last computed counter matrix is the
preimage matrix of the whole string. Both passes are needed to compute node
and link weights, but it is clear that one pass is enough to compute the config-
uration’s preimage matrix and consequently the number of cyclic preimages.

The partial node weight wo(ox, oL = oR) of the observed overlap ox and one
of the boundary nodes oL = oR is the product of the number of paths poL→ox

from an overlap oL in the left boundary to the node ox and the number of
paths pox←oR

from an overlap oR in the right boundary to the node ox (Figure

14

Fig. 12. Node (left) and link (right) weights for cyclic configurations; each boundary
overlap is treated separately

12).
wo(ox, oL = oR) = poL→ox · pox←oR

The full node weight wo(ox) is the sum of partial node weights over all the
boundary nodes.

wo(ox) =
km−1−1∑

oL=0

wo(ox, oL = oR)
ox = 0, 1, . . . , km−1 − 1

x = 0, 1, . . . , N

The partial link weight wn(nx, oL = oR) of the observed locally valid neigh-
borhood nx = oxcx+r = cx−rox+1 and one of the boundary nodes oL = oR

is the product of the number of paths poL→ox from an overlap oL in the left
boundary to the link’s source node ox and the number of paths pox+1←oR

from
an overlap oR in the right boundary to the link’s drain node ox+1 (Figure 12).
The weights of locally invalid links are zero.

wn(nx, oL = oR) =

poL→ox · pox+1←oR
: f(nt−1

x) = ct
x

0 : f(nt−1
x) 6= ct

x

The full link weight wn(nx) is the sum of partial link weights over the boundary
nodes.

wn(nx) =
km−1−1∑

oL=0

wn(nx, oL = oR)
nx = 0, 1, . . . , km − 1
x = 0, 1, . . . , N − 1

4.5.2 Preimage network weights for bounded configurations

In the case of a bounded configuration there is no need to distinguish between
overlaps inside the boundary, since boundaries can be specified independently.
Forward counters pbL→ox and backward counters pox←bR contain the number
of preimages from each overlap ox to all the overlaps at one of the boundaries.

pbL→ox =
km−1−1∑

oL=0

poL→ox pox←bR =
km−1−1∑

oR=0

pox←oR

15

These are stored in counter vectors bbbx,f (forward pass) and bbbx,b (backward
pass).

bbbx,f = [pbL→0, pbL→1, . . . , pbL→ox , . . . , pbL→km−1−1]
T

bbbx,b = [p0←bR , p1←bR , . . . , pox←bR , . . . , pkm−1−1←bR]T
x = 0, 1, . . . , N

The forward counting pass starts at x = 0 with the left boundary vector
bbb0,f = bbbL. The vector at position x is calculated from the vector at position
x− 1.

bbbT
0,f = bbbT

L bbbT
x,f = bbbT

L DDD(c0 . . . cx−1) = bbbT
x−1,f DDD(cx−1) bbbT

N,f = bbbT
L DDD(α)

Forward counter vectors can be computed from forward counter matrices by
summing each matrix column into a single element.

bbbT
x,f = bbbT

L DDDx,f

The backward counting pass starts at x = N with the right boundary vector
bbbN,b = bbbR. The vector at position x is calculated from the vector at position
x + 1.

bbbN,b = bbbR bbbx,b = DDD(cx . . . cN−1)bbbR = DDD(cx)bbbx+1,b bbb0,b = DDD(α)bbbR

Backward counter vectors can be computed from backward counter matrices
by summing each matrix row into a single element.

bbbx,b = DDDx,b bbbR

At the end of each counting pass the last computed counter vector contains
the information about all full-length paths in the network. Since one of the
boundaries has been applied at the beginning of the pass, only the opposite
boundary has to be applied to compute the number of preimages.

pL↔R(α) = bbbT
N,f · bbbR = bbbT

L · bbb0,b

Both passes are needed to compute weights, but it is clear that one pass is
enough to compute the number of preimages.

The node weight wo(ox) of the observed overlap ox is the product of the number
of paths pbL→ox from the left boundary bbbL to the node ox and the number of
paths pox←bR from the right boundary bbbR to the node ox (Figure 13).

wo(ox) = pbL→ox · pox←bR

ox = 0, 1, . . . , km−1 − 1
x = 0, 1, . . . , N

The link weight wn(nx) of the observed locally valid neighborhood nx =
oxcx+r = cx−rox+1 is the product of the number of paths pbL→ox from the left

16

Fig. 13. Node (left) and link (right) weights for bounded configurations; each bound-
ary is treated as a whole

boundary bbbL to the link’s source node ox and the number of paths pox+1←bR

from the right boundary bbbL to the link’s drain node ox+1 (Figure 13). The
weights of locally invalid links are zero.

wn(nx) =

pbL→ox · pox+1←bR : f(nt−1
x) = ct

x

0 : f(nt−1
x) 6= ct

x

nx = 0, 1, . . . , km − 1
x = 0, 1, . . . , N − 1

4.5.3 Graphical representation of the weighted preimage network

The main purpose of preimage network weights is to see globally valid links.
In the graphical representation of the preimage network, link weights can be
represented by the line’s thickness. For large networks, the weights may be
too big to be used directly; in such a case the logarithm of the weight may
be used for line thickness. Some examples of weighted preimage networks are
given in the appendix.

5 Algorithms for listing preimages

Two algorithms are described in detail: the trace and backtrack (TB) algo-
rithm and the count and list (CL) algorithm. Both algorithms are graphically
described using the preimage network, but most of the tools described earlier
are only used in the second algorithm. The network can be traveled in the
forward and the backward direction. It is a choice that the forward direction
is from left to right and the backward direction from right to left. The direc-
tion is chosen so that the preimages of bounded configurations are sorted in
ascending order with the most significant digit (cell) at the left.

17

5.1 Trace and backtrack (TB) algorithm

The TB algorithm is similar to the wall follower algorithm for solving mazes.
The idea is that a person searching for an exit must always stick to the left
wall. If he comes to a fork, he takes the first passage on the left. If he gets into
a deadend, he must backtrack the walked path to the last fork. There he takes
the next passage on the left. This way all the paths in the whole labyrinth can
be searched for an exit. To remember the solution, he must write down the
passage choice at each fork on the successful path through the maze.

In the TB algorithm the preimage network replaces the maze. Forks are nodes
and passages are links in the network. The algorithm searches for all exit paths
where left boundary overlaps are start-points and right boundary overlaps are
exit-points. A path buffer CB of the size of a single preimage is used to store
the current path. Each time the current path reaches the right boundary, a
copy of the path buffer is stored as a preimage and the counter of preimages is
incremented. Then the algorithm backtracks and searches for other solutions,
until the whole network has been explored and all the preimages have been
found.

The TB algorithm uses only knowledge about the local validity of links when
choosing which link to trace. Another important aspect of the TB algorithm
is low memory consumption; this is because it is sufficient to store a single
path in memory. There is a detailed example explaining the TB algorithm in
the appendix.

The description of the algorithm is divided into five parts, as shown in the
flowchart (Figure 14).

Fig. 14. A simplified flowchart of the trace and backtrack algorithm

(0) Initialize: Tracing starts at the first overlap oL = 0 at the left boundary
x = 0. The overlap string is written into the path buffer CB (Figure 15). The
preimage counter is initialized to zero p = 0.

18

Fig. 15. Path buffer

(1) Trace: Tracing follows a neighborhood (link) nx from the current overlap
ox to the next overlap ox+1 (Figures 15 and 16). In the process the cell position
index x is incremented. There are k neighborhoods that can be traced from
each overlap. The selected neighborhood nx = oxcx+r is constructed from the
current overlap ox by adding a cell at the right. The added cell cx+r is used
to label the link to be traced. If the current overlap ox was reached by tracing
(not backtracking), then the first link to be traced is cx+r = 0. The local
validity of the neighborhood to be traced nx must be tested with the local
transition function f(nt−1

x) = ct
x against the observed cell at the present time

ct
x. If the neighborhood is valid, the path is traced and the added cell value

is stored in the path buffer CB(x + r) = cx+r, else the next neighborhood is
tried cx+r = cx+r +1. If the value of the incremented link label is less than the
number of available links cx+r < k, then the algorithm continues with tracing,
otherwise it continues with backtracking.

Fig. 16. Tracing step from the current to the next node

(3) Backtrack: When all the available links forward have been consumed
cx+r = k, the algorithm must backtrack to the last visited overlap ox−1 on the
path buffer (Figures 15 and 17). The selected neighborhood nx−1 = cx−r−1ox

is constructed from the current overlap ox by adding at the left a cell from
the path buffer CB(x− r − 1). The new overlap ox−1 is constructed from the
backtracked neighborhood nx−1 = ox−1cx+r−1 by removing the rightmost cell.
The removed cell cx+r−1 labels the last traced link from the overlap ox−1.
The cell value cx+r−1 is incremented so that the algorithm can continue with
tracing an unvisited link. If the value of the incremented link label is less than
the number of available links cx+r−1 < k, then the algorithm continues with
tracing, otherwise it continues with backtracking.

19

Fig. 17. Backtracking from the current node to the previous node

(2) Right boundary & list: Whenever the right boundary is reached
x = N , the starting overlap o0 = oL and the current overlap ox = oR must be
checked against boundary conditions before a copy of the current path buffer
CB can be stored into the list of preimages (Figure 15). For cyclic configura-
tions, starting and ending overlaps must be equal oR = oL and the preimage
has the same length as the present configuration. For bounded configurations
both overlaps must be valid bbbL(oL), bbbR(oR) > 0 and the preimage is 2r cells
longer than the present configuration. The preimage counter p is incremented.
Since there are no links forward, the algorithm continues with backtracking.

(4) Left boundary: When the left boundary has been reached and the
links forward have been consumed cx+r = k, the next left overlap oL = oL + 1
is used as a new start-point. When all left boundary overlaps oL have been
consumed (oL = km−1), the algorithm ends.

5.1.1 Algorithm pseudo code

initialize, start with the first overlap at the left (0)
while (there are available start-points) do

if (there are available links to trace forward) then
if (right boundary not yet reached) then (1)

trace the first available locally valid neighborhood
else if (right boundary reached) (2)

apply boundary conditions and
list the path buffer as a preimage

end if
else if (there are no available links to trace forward)

if (left boundary not yet reached) then (3)
backtrack the current path (stored in the buffer)

else if (left boundary reached) then (4)
move on to the next start-point

end if
end if

end while

20

Fig. 18. A simplified flowchart of the count and list algorithm

5.2 Count and list (CL) algorithm

The main difference between the TB and the CL algorithm is that the latter
avoids deadends. To accomplish this the algorithm must first analyze the net-
work, to know which overlaps will lead to an endpoint at the right boundary
and which will lead to a deadend. This network analysis is performed by the
backward counting pass (the same direction as backtracking), which was de-
scribed in the section on weighted preimage networks. The counting analysis
not only answers the question of whether overlaps will lead to an endpoint, but
it also computes the number of paths that can be traced forward from each
overlap in the network, and at the end (left boundary) leads to the number of
all preimages.

The data produced by the counting pass is used for initialization and the
listing pass (Figure 18). Initialization prepares an empty structure for the list
of preimages and as many tracing start-points (overlaps at the left boundary)
as there are preimages. Then the listing pass begins at the start-points and
adds cells to preimages column by column (traces them quasi-simultaneously,
Figure 19) until the right boundary is reached. Multiple start-points can be
seen as thick path roots. These paths are then branched into thinner paths
until the endpoints with thickness 1 are reached.

The listing pass is composed of three nested loops (Figures 18 and 19). The
tracing step (outermost loop) runs position indexes from the left to the right
boundary. The preimage counter (middle loop) only counts the modified preim-
ages. The cell selection (innermost loop) provides the cell to be added to each
preimage.

(0) Initialization: As with the TB algorithm, listing begins with overlaps
at the left boundary. The difference is that only globally valid overlaps are
used and that tracing is started simultaneously for all preimages. Where the
TB algorithm remembers a single current overlap ox, the CL algorithm needs
an array Aox of all current overlaps (|Aox| = p). At the beginning of listing,

21

Fig. 19. Computing the list of preimages (rule 110, k = 2, r = 1, bounded con-
figuration α = 00010011011111), observed when x = 7 is the observed cell in the
present configuration and x + r = 8 is the column of cells currently being added to
preimages

the array is initialized to overlaps at the left boundary Aox = AoL
.

For cyclic configurations the number poL←oR=oL
of preimages starting and end-

ing with overlap oL is the oL-th element on the diagonal of the backward
counter matrix at the left boundary DDD0,b = DDD(α).

poL←oR=oL
= bbb�(oL) = doL,oL

(α) oL = 0, 1, . . . , km−1 − 1

AoL
= [0, 0, . . . , 0︸ ︷︷ ︸

p0←0

, 1, 1, . . . , 1︸ ︷︷ ︸
p1←1

, . . . , oL, . . . , oL︸ ︷︷ ︸
poL←oR=oL

, . . . , km−1 − 1, . . . , km−1 − 1︸ ︷︷ ︸
pkm−1−1←km−1−1

]T

Since for cyclic configurations tracing must end with the same overlap it began
with, start-points must be remembered. This is achieved by making a copy of
the initialized array of current overlaps into a separate array of left boundary
overlaps.

For bounded configurations the number poL←bR of traces starting with overlap
oL is the oL-th element in the backward counter vector at the left boundary
bbb0,b multiplied by the oL-th element in the left boundary vector.

poL←bR = bbb0,b(oL) · bbbL(oL) oL = 0, 1, . . . , km−1 − 1

AoL
= [0, 0, . . . , 0︸ ︷︷ ︸

p0←bR

, 1, 1, . . . , 1︸ ︷︷ ︸
p1←bR

, . . . , oL, . . . , oL︸ ︷︷ ︸
poL←bR

, . . . , km−1 − 1, . . . , km−1 − 1︸ ︷︷ ︸
pkm−1−1←bR

]T

22

Preimages of bounded configurations begin with a left boundary overlap;
therefore, the initialized array of current overlaps AoL

is written into the list
of preimages as strings (Figures 15 and 19).

(1) Tracing step: In the main loop of the CL algorithm, the tracing step
is performed (Figure 19). At each step another cell value at position x + r is
added to all preimages (a column in the structure of preimages) and the cell
position index x is incremented. The algorithm ends when all preimages are
fully listed, that is, after N steps.

(2) Preimage counter: At the beginning of each tracing step, the column
of current preimage cells cx+r is empty. Cells are written into preimages one by
one, from the first preimage at the top i = 0 to the last at the bottom i = p−1
(Figure 19). Each time a cell is written into a preimage, the preimage counter
is incremented i = i + 1. This is implemented as the middle loop.

(3) Cell selection: In the TB algorithm a cell cx+r is selected and added
to the path buffer each time a locally valid link nx = oxcx+r is traced from the
current overlap ox to the next overlap ox+1. In the process the next overlap
becomes the current overlap. The same happens in the CL algorithm. The
current overlap is stored in the array of current overlaps Aox ; when a cell is
written to the i-th preimage, the i-th overlap in the array is updated to the
new value.

The algorithm tries all the k possible neighborhoods nx that can be con-
structed from the current overlap ox (i-th element of Aox). If a neighborhood
is locally valid f(nt−1

x) = ct
x the cell used to construct it cx+r is written into the

number of preimages computed by the counting pass. This represents branch-
ing of preimage paths (width pox) into k subbranches (widths pox+1 , where
cx+r and consequently ox+1 is different for each subbranch).

Aox = [. . . , ox, ox, , ox︸ ︷︷ ︸
pox

, . . .]T

Aox+1 = [. . . ,
︷ ︸︸ ︷
ox+1, . . . , ox+1︸ ︷︷ ︸

pox+1
cx+r=0

, o′x+1, . . . , o
′
x+1︸ ︷︷ ︸

po′
x+1

c′x+r=1

, . . . , o′′x+1, . . . , o
′′
x+1︸ ︷︷ ︸

po′′
x+1

c′′x+r=k−1

, . . .]T

For bounded configurations the subbranch width is pox+1 = pox+1←bR the ox+1-
th element of the counter vector bbbx+1,b. For cyclic configurations the subbranch
width is pox+1 = pox+1←oR=oL

the element dox+1,oL
of the counter matrix DDDx+1,b,

where oL is the starting overlap for the observed branch of preimages.

23

When all k neighborhoods following from the current overlap have been tried,
a new current overlap is read from the array and processed. This loop continues
until i = p.

5.2.1 Algorithm pseudo code

counting:
Cyclic: set the counter matrix to the identity matrix
Bounded: set the counter vector to the right boundary vector
for (position indexes x from N to 0) do

compute the next counter matrix (or vector) and store each of them
end for
compute the number of preimages p

initialization: (0)
create a list of p empty preimages each having N empty cells
create an array Aox of current overlaps with p empty entries
for (all overlaps o from 0 to km−1 − 1) do

Cyclic: write the overlap o into poL=o←oR=oL
array entries

Bounded: write the overlap o into poL=o←bR array entries
end for
Cyclic: copy Aox into the array of start-point overlaps AoL

Bounded: write Aox as overlap strings into the list of preimages

listing:
for (position indexes x from 0 to N − 1) do (1)

while (there are empty cells at the current position index) do (2)
for (all distinct cell values c from 0 to k − 1) do (3)

if (n = oxc is a locally valid neighborhood) then
construct the next overlap ox+1 from ox

Writing directly into the list of preimages:
Cyclic: write c into pox+1←oL

empty cells at pos. x + r mod N
Bounded: write c into pox+1←bR empty cells at pos. x + r

end if
end for

end while
end for

5.3 Computation complexity and memory consumption

In both the TB and the CL algorithm the complexity of searching and listing
of paths can be treated separately.

24

Listing complexity is the same for both algorithms. It is a linear function of
the size of the lattice N and the number of preimages p. Only the constant
Clist may be improved.

Tlist = Clist ·N · p
Memory consumption for storing preimages is a simple product of the preim-
ages size N or N + 2r, their number p and the memory consumption of a
single cell Ccell. The constant depends on the implementation and is at least
Ccell ≥ log2 k (a cell value can be stored as a single bit or as an integer).

Mlist,cyclic = Ccell ·N · p Mlist,bounded = Ccell · (N + 2r) · p

The maximum number of preimages pmax is equal to the maximum number
of configurations in a finite CA. The average number of preimages p (over all
configurations in a finite CA) is one.

pmax = kN p = 1

In the TB algorithm searching complexity heavily depends on the present con-
figuration due to different network structures. Since every traced link is later
backtracked, it is sufficient to observe tracing. If all links are valid than the
upper complexity limit is reached. The number of traced links is the number of
branches in a full k-ary tree of depth N . The same equation holds for bounded
and cyclic lattices.

TTB ≤ Ctrace ·
N−1∑
x=0

km−1 · kx = Ctrace · km−1 · k
N − 1

k − 1

The maximum complexity is very high for the TB algorithm, but the average
complexity is much lower and probably approaches a linear relation to the
problem size N .

Memory consumption of the TB algorithm is low; only a buffer for a single
preimage is needed.

MTB = Ccell · (N + 2r)

The CL algorithm performs searching using the counting pass. Its complex-
ity does not depend on the present configuration, which defines the network
structure. Counting is defined as matrix multiplication, but is less complex, be-
cause regular and sparse matrices are used. The maximum number of nonzero
elements in the single cell preimage matrix D(c) is km: at most k elements
(overlap fan-out) in each of the km−1 rows. For cyclic configurations, a string
preimage matrix (all elements can be nonzero) is multiplied by a cell preimage
matrix (sparse). There are k scalar multiplications for each of the km−1×km−1

elements in the output matrix.

Tcounting, cyclic = Ccounting, cyclic ·N · k2m−1

25

Fig. 20. Overview of known algorithms on a scale (from only local network knowledge
on the left to full network knowledge on the right)

For bounded configurations, a preimage vector (all elements can be nonzero)
is multiplied by a cell preimage matrix (sparse). There are k scalar multipli-
cations for each of the km−1 elements in the output vector.

Tcounting, bounded = Ccounting, bounded ·N · km

Memory consumption of the CL algorithm is high and is the product of the
present configuration size N , the size of the preimage vector or matrix and
memory consumption of a single counter element Ccounter (usually a 32-bit
integer).

Mcounting, cyclic = Ccounter ·N · k(m−1)·2

Mcounting, bounded = Ccounter ·N · km−1

The TB algorithm can be improved to a lower average complexity; on the
other hand the CL algorithm is very simple and can be optimized for a low
constant factor.

5.4 Comparison of known algorithms

In addition to the two algorithms described in this paper, there are two other
algorithms for listing preimages: the CA reverse algorithm (RA) (as described
by Wuensche in [3c]) and calculating ancestors using a subset diagram (SD)
(as described by Mora, Juárez and McIntosh [4]). The four algorithms can
be sorted depending on how much insight into the structure of the preimage
network they have (Figure 20). Two groups can be formed, depending on
whether the algorithms need backtracking or they first perform a backward
pass of the network to analyze it.

The TB and RA algorithms have only local knowledge of the preimage net-
work, and therefore they sometimes get lost in dead-end paths and have to
return to the last fork by backtracking. Many small modifications can be made
to the TB algorithm to reduce average complexity, but most would increase

26

the constant Ctrace and memory consumption. For example; the RA algorithm
stores data about all forks with unused links into a stack, so it can jump back
to the last fork in a single backtracking step.

The CL and SD algorithms perform an analysis of the network (first backward
pass) before tracing preimages (second forward pass). The usage of the subset
diagram in the SD algorithm can be seen as a Boolean version of the counting
pass. A lot of memory can be saved, but the total number of preimages is not
known until the end of listing. The SD algorithm must still trace each preimage
separately, but it never gets lost. Another advantage of the CL algorithm is
linear code instead of the recursion used by the SD algorithm. Because of this
there is less overhead for function calls and memory allocation.

Another idea described by Mora is calculating preimages two or more steps
into the past. This can be done by constructing a local transition function
that computes n time steps.

ct+n
x = fn(ct

x−nr . . . ct
x+nr)

But this approach means the growth of the neighborhood size from m = 2r+1
to m′ = 2nr + 1 and the subsequent exponential growth of the de Bruijn
diagram and the preimage matrix. This adds a lot to memory consumption,
and the profit due to a deeper look into the history is probably equal to or
less than the increase in complexity.

6 Concluding remarks

The idea of the article was to focus on counting and listing preimages. A new
graphical representation of the de Bruijn diagram is introduced, which can be
extended to the preimage network. A graph-theoretical approach has already
been used to analyze de Bruijn diagrams, but the preimage network needs a
different approach. To this end the analysis of paths in large citation networks
as described by Batagelj is used.

Two algorithms for listing preimages are described and compared with the
two other known algorithms. It seems there is not much room for algorithmic
improvement, since the complexity of all algorithms is already a linear function
of configuration size. All the mentioned algorithms can be parallelized, but at
the moment there seems to be no need for it.

Weighted preimage networks may be useful for observing local reversibility
of configurations. There are localized areas in the network, where multiple
paths coincide (locally reversible substrings) and areas where paths diverge
into distinct pasts (locally irreversible substrings, causing information loses)

27

(Figure A.1). Observing local reversibility may lead us to the understanding of
information dynamics for CA. This was the main impetus behind this article,
but it still lies far ahead.

Information is commonly introduced into deterministic CA as the initial con-
figuration (initial condition or time boundary). Another option is to use space
boundaries, but sometimes introducing information into the CA needs to be
avoided, which can be done with cyclic configurations or by placing a finite
configuration on an infinite inert background (for example, all zero). While
running the CA in reverse, boundary vectors can be used to describe the in-
formation about the background outside the CA boundaries. The observed
string α can be seen as part of an infinite string βLαβR (Figure 11). Boundary
vector bbbL describes preimages of the left semi-infinite string βL and boundary
vector bbbR describes preimages of the right semi-infinite string βR. Such bound-
ary vectors can be generalized to contain positive integers or probabilities.

Preimage vectors with Boolean elements are used by McIntosh, Mora and
Juárez to construct the subset diagram. The subset diagram can be used
as a finite automaton to define the regular language of all Garden of Eden
configurations.

Another obvious further development would be to modify the theory for com-
puting preimages in two or more dimensions. This could be used in searching
for Garden of Eden configurations in the “Game of Life”.

A Examples

For an example of implementation of the algorithms in C language see the
source code in [8].

A.1 Rule 110 and characteristic configurations

All the examples here are performed on the elementary rule 110, as defined in
Example 1 at the end of Section 3 and Example 3 at the end of Section 4.1.

Two characteristic configurations of rule 110 CA will be observed: the ether
background and the quiescent background.

If the CA evolution of rule 110 from a random initial condition is observed,
after some time most of the space is covered with the ether background. This is
a pattern periodic in space and time. The space period α = 000100110111112

is 14 cells long and the time period is 7 steps.

28

The quiescent background is, on the other hand, used for simple initial con-
ditions. The future configuration of the quiescent background is again the
quiescent background. This pattern is again periodic in space and time. The
space period α = 02 is a single cell long and the time period is a single step.

A.2 The preimage network, counting and listing preimages

The weighted preimage network for the ether background on a bounded con-
figuration can be seen in Figure A.2 and the cyclic version in Figure A.1. Link
weights are represented by the thickness of the links. To compute the link
weights, the forward and backward counting passes are needed.

A.3 Cyclic configuration

For cyclic configurations, intermediate counters are stored as preimage matri-
ces (Tables A.1 and A.2). The results of the backward count can be used by
the CL algorithm. The last computed matrix is the preimage matrix of the
whole observed string.

Table A.1
Forward counters for the cyclic example

o counter matrices
00 1000 1000 1000 1000 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
01 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
10 0010 1000 1000 1000 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
11 0001 0001 0001 0001 0010 1000 1000 0100 0011 1001 0110 0111 0121 0221 0232
α 0 0 0 1 0 0 1 1 0 1 1 1 1 1

Table A.2
Backward counters for the cyclic example

o counter matrices
00 0000 0000 0000 0000 0232 0232 0232 0000 0121 0121 0111 0110 0011 0100 1000
01 0000 0000 0000 0232 0000 0000 0121 0232 0000 0221 0121 0111 0110 0011 0100
10 0000 0000 0000 0000 0232 0232 0232 0000 0121 0121 0111 0110 0011 0100 0010
11 0232 0232 0232 0232 0000 0000 0000 0121 0111 0111 0110 0011 0100 0010 0001
α 0 0 0 1 0 0 1 1 0 1 1 1 1 1

Node and link weights (Table A.3) are calculated from counters, and a weighted
preimage network for the cyclic ether configuration can be drawn (Figure A.1).

29

Table A.3
Network weights for the cyclic ether configuration

(a) Node (overlap) weights
o weights
00 0 0 0 0 0 2 2 0 0 1 0 0 0 0 0
01 0 0 0 0 0 0 0 2 0 0 1 1 0 2 0
10 0 0 0 0 2 0 0 0 1 0 1 0 2 0 0
11 2 2 2 2 0 0 0 0 1 1 0 1 0 0 2
α 0 0 0 1 0 0 1 1 0 1 1 1 1 1

(b) Link (neighborhood) weights
n weights

000 0 0 0 0 0 2 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 2 0 0 1 0 0 0 0
010 0 0 0 0 0 0 0 1 0 0 0 1 0 0
011 0 0 0 0 0 0 0 1 0 0 1 0 0 2
100 0 0 0 0 2 0 0 0 1 0 0 0 0 0
101 0 0 0 0 0 0 0 0 0 0 1 0 2 0
110 0 0 0 2 0 0 0 0 0 1 0 1 0 0
111 2 2 2 0 0 0 0 0 1 0 0 0 0 0
α 0 0 0 1 0 0 1 1 0 1 1 1 1 1

Fig. A.1. Preimage network for the cyclic ether background for rule 110

A.3.1 Counting preimages

The diagonal of the preimage matrix DDD(α) of the observed string shows p� = 2
preimages for a cyclic configuration.

DDD(α) =

0 0 0 0
0 0 0 0
0 0 0 0
0 2 3 2

 p� = bbbT
ubbb� =

[
1 1 1 1

]
0
0
0
2

 = 2

A.3.2 The list of preimages

The length of preimages for cyclic configurations is equal to the length of the
present string N = 14 (Table A.4).

Table A.4
Preimages of the cyclic ether configuration
t-1 11110001001101

11110001110101
t 00010011011111

30

A.4 Bounded configuration

For bounded configurations, intermediate counts are stored as preimage vec-
tors (Table A.5). A simple unrestricted boundary is used on both sides.

bbbL = bbbR = bbbu = [1, 1, 1, 1]T

Table A.5
Counters for the bounded ether configuration

(a) Forward counters
o counter vectors
00 1 2 2 2 0 1 1 0 0 1 0 0 0 0 0
01 1 0 0 0 2 0 0 1 0 0 1 1 1 2 2
10 1 0 0 0 1 0 0 0 1 0 1 1 2 2 3
11 1 1 1 1 0 0 0 0 1 1 0 1 1 1 2
α 0 0 0 1 0 0 1 1 0 1 1 1 1 1

(b) Backward counters
o counter vectors
00 0 0 0 0 7 7 7 0 4 4 3 2 2 1 1
01 0 0 0 7 0 0 4 7 0 5 4 3 2 2 1
10 0 0 0 0 7 7 7 0 4 4 3 2 2 1 1
11 7 7 7 7 0 0 0 4 3 3 2 2 1 1 1
α 0 0 0 1 0 0 1 1 0 1 1 1 1 1

Table A.6
Network weights for the bounded ether configuration

(a) Node (overlap) weights
o weights
00 0 0 0 0 0 7 7 0 0 4 0 0 0 0 0
01 0 0 0 0 0 0 0 7 0 0 4 3 2 4 2
10 0 0 0 0 7 0 0 0 4 0 3 2 4 2 3
11 7 7 7 7 0 0 0 0 3 3 0 2 1 1 2
α 0 0 0 1 0 0 1 1 0 1 1 1 1 1

(b) Link (neighborhood) weights
n weights

000 0 0 0 0 0 7 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 7 0 0 4 0 0 0 0
010 0 0 0 0 0 0 0 4 0 0 2 2 1 2
011 0 0 0 0 0 0 0 3 0 0 2 1 1 2
100 0 0 0 0 7 0 0 0 4 0 0 0 0 0
101 0 0 0 0 0 0 0 0 0 0 3 2 4 2
110 0 0 0 7 0 0 0 0 0 3 0 2 1 1
111 7 7 7 0 0 0 0 0 3 0 0 0 0 0
α 0 0 0 1 0 0 1 1 0 1 1 1 1 1

Node and link weights (Table A.6) are calculated from counters, and a weighted
preimage network for the bounded ether configuration can be drawn (Figure
A.2).

Fig. A.2. Preimage network for the bounded ether background (unrestricted bound-
aries)

31

A.4.1 Counting preimages

The number of preimages can be computed from ending count vectors, by
applying the ending boundary.

pL↔R = bbbT
N,f · bbbR =

[
0 2 3 2

]
1
1
1
1

 = bbbT
L · bbb0,b =

[
1 1 1 1

]
0
0
0
7

 = 7

Another way to compute the number of preimages is to use the string preimage
matrix DDD(α), which is computed by a counting pass for the cyclic configura-
tion.

pL↔R = bbbT
LDDD(α)bbbR =

[
1 1 1 1

]
0 0 0 0
0 0 0 0
0 0 0 0
0 2 3 2

1
1
1
1

 = 7

A.4.2 The list of preimages

Preimages for bounded configurations are two cells longer than the present
string NL↔R = N + 2r = 16 (Table A.7).

Table A.7
Preimages of the bounded ether configuration
t-1 1111100010010101

1111100010010110
1111100010011010
1111100010011011
1111100011101010
1111100011101011
1111100011101101

t 00010011011111

A.5 Boolean boundary conditions

The boundary conditions for the quiescent background βL, βR = . . . 000 . . .2
(Figure A.3) can be defined by Boolean boundary vectors.

bbbL = [1, 0, 0, 1]T bbbR = [1, 0, 1, 1]T

32

Fig. A.3. Preimage network of a string α on the quiescent background
C = . . . βLαβR . . .

A.6 TB algorithm

The TB algorithm is presented on rule 110 and configuration C = α = 00112.
Figure A.4 shows the preimage network with the path of the trace and back-
track algorithm. Tracing is represented by continuous arrows and backtracking
by dashed arrows. The same path is aditionally represented using equations
(Table A.8).

Fig. A.4. Tracing and backtracking through the preimage network of α = 00112

Every time tracing reaches the right boundary, the starting overlap oL and
ending overlap oR are checked against boundary conditions and eventually the
traced path is stored as a preimage. There are p = 5 preimages for unrestricted
boundary conditions bbbu and a single p� = 1 preimage for cyclic boundary
conditions.

A.7 CL algorithm

The CL algorithm is again presented on rule 110 and configuration C = α =
00112, and the preimage network is the same as for the previous example
(Figure A.4). First, preimage counters must be constructed using the backward
counting pass (Table A.9).

For cyclic configurations, backward counting starts at the right boundary with

33

Table A.8
Steps performed in the TB algorithm
tracing and backtracking path cyclic pre. bounded pre.

oL = 002
0→ 002

0→ 002
1→ 012

0→ 102 = oR 00 0 0 1 02

012 ← 102

012
1→ 112 = oR 00 0 0 1 12

002 ← 002 ← 002 ← 012 ← 112

oL = 012

oL = 102
0→ 002

0→ 002
1→ 012

0→ 102 = oR 0 0 0 12 10 0 0 1 02

012 ← 102

012
1→ 112 = oR 10 0 0 1 12

102 ← 002 ← 002 ← 012 ← 112

oL = 112
1→ 112

1→ 112
0→ 102

1→ 012 = oR 11 1 1 0 12

112 ← 112 ← 112 ← 102 ← 012

an identity matrix DDDN=4,b = III and computes counter matrices until it reaches
the left boundary.

For bounded configurations, backward counting begins at the right boundary
with an unrestricted boundary vector bbbR = bbbu and computes counter vectors
until it reaches the left boundary, which is unrestricted too bbbL = bbbu. Counter
vectors can be also computed from the counter matrices.

Table A.9
Backward counters for the configuration α = 0011

(a) Cyclic configuration
o counter matrices
00 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 0 0
01 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 0
10 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1 0
11 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1
α 0 0 1 1

(b) Bounded conf.
o counter vectors
00 2 2 2 1 1
01 0 0 2 2 1
10 2 2 2 1 1
11 1 1 1 1 1
α 0 0 1 1

The listing of preimages is described using arrays of current overlaps. There
is a single preimage for the cyclic configuration.

Ao0 = [102︸ ︷︷ ︸
poL=102←oR

= 1
oR = 102

]T Ao1 = [002︸ ︷︷ ︸
poL=002←oR

= 1
c1 = 0

]T

Ao2 = [002︸ ︷︷ ︸
poL=002←oR

= 1
c2 = 0

]T Ao3 = [012︸ ︷︷ ︸
poL=012←oR

= 1
c3 = 1

]T Ao4 = [102︸ ︷︷ ︸
poL=102←oR

= 1
c0 = 0

]T

34

There are 5 preimages for the bounded configuration.

Ao0 = [002, 002︸ ︷︷ ︸
poL=002←bR = 2

oL = 002

, 102, 102︸ ︷︷ ︸
poL=102←bR = 2

oL = 102

, 112︸ ︷︷ ︸
poL=112←bR = 1

oL = 112

]T

Ao1 = [002, 002︸ ︷︷ ︸
po1=002←bR = 2

c1 = 0

, 002, 002︸ ︷︷ ︸
po1=002←bR = 2

c1 = 0

, 112︸ ︷︷ ︸
po1=112←bR = 1

c1 = 1

]T

Ao2 = [002, 002︸ ︷︷ ︸
po2=002←bR = 2

c2 = 0

, 002, 002︸ ︷︷ ︸
po2=002←bR = 2

c2 = 0

112︸ ︷︷ ︸
po2=112←bR = 1

c2 = 1

]T

Ao3 = [012, 012︸ ︷︷ ︸
po3=012←bR = 2

c3 = 1

, 012, 012︸ ︷︷ ︸
po3=012←bR = 2

c3 = 1

, 102︸ ︷︷ ︸
po3=102←bR = 1

c3 = 0

]T

Ao4 = [102︸ ︷︷ ︸
p102←bR = 1

c4 = 0

, 112︸ ︷︷ ︸
p112←bR = 1

c4 = 1

, 102︸ ︷︷ ︸
p102←bR = 1

c4 = 0

, 112︸ ︷︷ ︸
p112←bR = 1

c4 = 1

, 012︸ ︷︷ ︸
po4=012←bR = 1

c4 = 1

]T

References

[1] Erica Jen, (1989): Enumeration of Preimages in Cellular Automata, Complex
Systems 3 (5): 421-456.

[2] Burton Voorhees, (1993): Predecessors of cellular automata states II. Pre-images
of finite sequences, Physica D 73 (1-2): 136-151.

[3a] Andrew Wuensche, Mike Lesser, (1992): The Global Dynamics of Cellular
Automata, Addison-Wesley.
http://www.cogs.susx.ac.uk/users/andywu/gdca.html

[3b] Andrew Wuensche, (1997): Attractor Basins of Discrete Networks, Cognitive
Science Research Paper 461, Univ. of Sussex, D.Phil thesis.
ftp://ftp.cogs.susx.ac.uk/pub/users/andywu/papers/aw_thesis.pdf

[3c] Andrew Wuensche, (1999): Classifying Cellular Automata Automatically:
Finding gliders, filtering, and relating space-time patterns, attractor basins,
and the Z parameter, COMPLEXITY, 4 (3), 47-66. ftp://ftp.cogs.susx.
ac.uk/pub/users/andywu/papers/cplex.pdf

35

http://www.cogs.susx.ac.uk/users/andywu/gdca.html
ftp://ftp.cogs.susx.ac.uk/pub/users/andywu/papers/aw_thesis.pdf
ftp://ftp.cogs.susx.ac.uk/pub/users/andywu/papers/cplex.pdf
ftp://ftp.cogs.susx.ac.uk/pub/users/andywu/papers/cplex.pdf

[4] J. C. S. T. Mora, G. Juárez, H. V. McIntosh, (2004): Calculating ancestors in
one-dimensional cellular automata, International Journal of Modern Physics C,
15 (8), 1151-1169

[5a] Harold V. McIntosh, (1994): Linear Cellular Automata Via de Bruijn Diagrams.
http://delta.cs.cinvestav.mx/~mcintosh/newweb/marcodebruijn.html

[5b] Harold V. McIntosh, (1993): Ancestors: Commentaries on The Global Dynamics
of Cellular Automata by Andrew Wuensche and Mike Lesser.
http://delta.cs.cinvestav.mx/~mcintosh/oldweb/wandl/wandl.html

[6] Iztok Jeras, Andrej Dobnikar, (2006): Cellular Automata Preimages: Count and
List Algorithm. International Conference on Computational Science (3) 2006:
345-352.

[7] Vladimir Batagelj, (2003): Efficient Algorithms for Citation Network Analysis.
http://arxiv.org/abs/cs/0309023

[8] Iztok Jeras, (2005): Artificial Life & Cellular Automata, Source code for listing
algorithms.
http://www.rattus.info/al/al.html

36

http://delta.cs.cinvestav.mx/~mcintosh/newweb/marcodebruijn.html
http://delta.cs.cinvestav.mx/~mcintosh/oldweb/wandl/wandl.html
http://arxiv.org/abs/cs/0309023
http://www.rattus.info/al/al.html

	Introduction
	Nomenclature
	Formal definition of cellular automata
	Reversing the direction of time
	The number notation for strings

	Counting preimages
	Preimages of a single cell and the preimage diagram
	Preimages of a string of cells and the preimage network
	Boundary conditions
	The number of preimages
	Weighted preimage network

	Algorithms for listing preimages
	Trace and backtrack (TB) algorithm
	Count and list (CL) algorithm
	Computation complexity and memory consumption
	Comparison of known algorithms

	Concluding remarks
	Examples
	Rule 110 and characteristic configurations
	The preimage network, counting and listing preimages
	Cyclic configuration
	Bounded configuration
	Boolean boundary conditions
	TB algorithm
	CL algorithm

	References

